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Abstract: In this study a wireless multiple-input multiple-output (MIMO) communication system operating over a
fading channel is considered. Data packets are stored in a finite size buffer before being released into the time-
varying MIMO wireless channel. The main objective of this work is to satisfy a specific quality of service (QoS)
requirement, i.e. the probability of data loss because of both erroneous wireless transmission and buffer
overflow, as well as to maximise the system throughput. The theoretical limit of ergodic capacity in MIMO
time-variant channels can be achieved by adapting the transmission rate to the capacity evolving process. In
this study, the channel capacity evolving process has been described by a suitable autoregressive model based
on the capacity time correlation and a finite state Markov chain (FSMC) has been derived. The joint effect of
channel outage at the physical layer and the buffer overflow at the medium access control layer has been
considered to describe the probability of data loss in the system. The optimal transmission strategy must
minimise that probability of data loss and has been derived analytically through the Markov decision process
(MDP) theory. Analytical results show the significant improvements of the proposed optimal transmission
strategy in terms of both system throughput and probability of data loss.
1 Introduction
Multiple-input multiple-output (MIMO) wireless systems
gained significant interest because of their high-spectral
efficiency and increased channel capacity. According to the
Shannon’s theory, the channel capacity upper bounds the
maximum amount of information that can be reliably
transmitted over the communication channel, with an
asymptotically small probability of error. The ability of
transmitting close to the capacity limit relies on an accurate
channel state information (CSI), which must be provided at
the receiver for effective decoding. Moreover, pilots-assisted
channel estimation can provide an accurate CSI for flat-
fading channel even for moderate/high user mobility [1, 2].
Furthermore, if the CSI is available not only at the receiver
but also at the transmitter, a high multiplexing gain can
be achieved in multi-antennas transmissions [3], further
increasing the spectral efficiency.
T Commun., 2010, Vol. 4, Iss. 6, pp. 683–696
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The knowledge of the channel state at the transmitter can
be obtained by a feedback channel as described in [4].
Feeding the predicted channel capacity to the transmitter
would allow to choose the right modulation, coding and
power to match the capacity of the wireless channel, with a
reasonable amount of feedback information.

Shannon’s channel capacity is achieved by utilising long
codes. Thus, the channel capacity plays a primary role in
the modelling of the communication system, when there
are no constraints on energy and coding/decoding
complexity at the transmitter/receiver side. In this case it is
possible to focus on the MIMO channel capacity, which
represents the maximum amount of information supported
by the MIMO channel. The main objective of this study is
to investigate the optimal approach to the variable
signalling rate control for a MIMO wireless time-variant
channel.
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In this study, a discrete autoregressive (DAR) prediction
model is used to predict the capacity variation at specific
instants of time. The DAR model is based on the capacity
correlation and on the CSI at a previous moment in time.
Thanks to the prediction model, the transmitter can adapt
its signalling rate to the predicted capacity value. The
DAR-1 model assigns a Markov nature to the
instantaneous capacity process. Dividing the continuous
capacity process into a finite number of discrete states, a
finite state Markov chain model (FSMC) for the
instantaneous MIMO capacity is obtained. The principle
of FSMC is to discretise a continuous process into a finite
number of states, over which the process itself can be
qualified separately. The FSMC is a well accepted block
fading channel model for slow-varying flat fading channels,
where the channel is assumed to stay in the same state
within one block period. In wireless communication, the
Markovian assumption is widely used to model the channel
fading and the signal to noise ratio (SNR) variation [5–7].
Moreover, the FSMC model and adaptive modulation and
coding (AMC) strategies are commonly accepted as the
fundamental techniques for developing effective cross-layer
protocols and algorithms.

If a transmission system with a single finite buffer is
considered, higher layer data packets are enqueued into a
finite size buffer space before being released onto the time-
variant wireless channel. The choice of the optimal
signalling rate must take into account the buffer state: over
the physical (PHY) layer, the buffer at the MAC layer is
itself a FSMC dependent on the arrival process. The joint
consideration of the capacity state and buffer state leads to
a two-dimensional optimisation process, where the optimal
signalling rate should be chosen according to the state of
the instantaneous capacity and how many packets are
present in the buffer. The choice of the signalling rate at
each time frame must maximise the performance at each
state: the probability of successful transmission
(throughput) at that specific signalling rate. According to
the outage definition provided in [8], the objective of this
analysis is to minimise the average joint packet loss rate
because of both outage and buffer overflow. In this case
there are two design objectives (outage and buffer overflow)
that jointly define the optimisation target: to minimise the
end-to-end packet loss. The optimal transmission policy
design is investigated analytically with the application of
dynamic programming (DP) and Markov decision process
(MDP) theories.

The rest of this paper is organised as follows. In Section 2,
the motivations and contributions of this work are discussed.
In Section 3, we give the system model used for this study.
Capacity distribution for mobile MIMO channel is
presented in Section 4. In Section 5, we briefly review
some related research work. In Sections 6 and 7 FSMC for
MIMO channel capacity and the proposed two-
dimensional cross layer optimisation approach are
discussed, respectively. Section 8 concludes this work.
4
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2 Motivations and contributions
This study is motivated by the following considerations.
First, the channel variation because of user mobility results
into an instantaneous channel capacity variation. The
instantaneous capacity can be modelled as a Gaussian
random process, whose mean value is defined as the
channel ergodic capacity. The ergodic capacity represents
the theoretical limit of the amount of information, which
can be reliably transmitted over the channel in a long-time
observation. From a system point of view, the theoretical
limit denoted by the channel ergodic capacity can be
achieved in transmission by adapting the signalling rate to
the evolution of the instantaneous capacity [8]; the
signalling rate represents the amount of information
transmitted on a specific timescale and it is a percentage of
the channel capacity. By considering a channel evolution
based on discrete time steps (i.e. the frame duration Tf), we
propose to adapt the signalling rate to the capacity variation
to reach the ergodic capacity. Second consideration is that
the information to be transmitted is not a continuous
process but rather arrives from the upper layer (MAC) and
can be subject to loss due the finite buffer size. Therefore
in order to optimise the system transmission, the signalling
rate must be chosen by considering both the actual channel
capacity and the buffer state. In other words, the maximum
amount of information can be transmitted by adapting the
signalling rate to the channel capacity and buffer state: the
aim is to transmit at the maximum reliable rate and to
minimise the probability of buffer overflow (i.e. losing
packets at the buffer with no chance to recover them).

The major contributions of this work are summarised as
follows:

1. this study proposes an analytical definition of FSMC for
the MIMO channel capacity;

2. this study develops an analytical model of the proposed
algorithm for evaluating quality of service (QoS)
performance metrics at the MAC layer, such as the system
throughput and probability of packet loss;

3. combined with previous research, this paper proposes an
efficient method for cross-layer performance optimisation.

3 System model
Fig. 1 illustrates the general structure of the system model
used for this study. Specifically, the PHY layer is
characterised by multiple antennas at both sides of the
communication link, which results in a significant channel
capacity increase. At the PHY layer, the amount of
information sent over the MIMO channel per unit time/
bandwidth is defined as the signalling rate of the
transmitter. The MAC layer of the system is characterised
by a single finite buffer, in which data arriving from the
higher application layers are enqueued. The dependence
IET Commun., 2010, Vol. 4, Iss. 6, pp. 683–696
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IET
do

www.ietdl.org
Figure 1 Communication system scheme with feedback channel
between the PHY and MAC layers lies in the PHY signalling
rate, which represents the number of packets which are de-
queued from the buffer and transmitted over the MIMO
channel per unit time/bandwidth. This definition states the
equivalence between the signalling rate at the PHY layer
and the buffer service rate at the MAC layer. At the PHY
layer, AMC is applied to achieve adaptive multirate
transmission over the time-variant MIMO channel.

The instantaneous channel capacity can be well
approximated by a Gaussian process [3, 9]. According to
the definition of Shannon capacity [8], the channel capacity
can be interpreted as the maximum amount of information
that can be reliably transmitted on the MIMO channel,
with a suitable code and modulation scheme at the PHY
layer of the system. With no constraints on energy
availability or delay in transmission, the instantaneous
capacity represents the limit of information that can be
transmitted by the system. The channel spectral efficiency
(bits/s/Hz) is related to the signalling rate (packets/s) by
the bandwidth required by the system [10] and the packet
size. Data packets of size Nb bits are collected in a finite
buffer of B packets. The system works with time frames of
fixed duration Tf. The frame duration also represents the
time step at which the signalling rate can be adjusted based
on the channel capacity and buffer state.

4 Capacity distribution for mobile
MIMO channel
The characteristics of the channel capacity in MIMO systems
allow to develop a useful model for the instantaneous capacity
variation, which will be used later to obtain the FSMC for
the capacity process. In the literature, many studies deal
Commun., 2010, Vol. 4, Iss. 6, pp. 683–696
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with the statistical properties of the MIMO wireless
capacity. Some of those statistical properties are the
probability density function (PDF), the cumulative
distribution function (CDF), the level crossing rate (LCR)
and the average fade duration (AFD) of the channel
capacity. However, deriving exact analytical expressions for
all those statistical properties appears to be a complicated
task. Referring to the principle of maximum entropy [11],
we assume that elements of the channel matrix are
independent and identically distributed (i.i.d.) zero mean
Gaussian processes. If CSI is available at the receiver but
not at the transmitter side, MIMO capacity is a random
process, approximately Gaussian for large number of
transmitting and receiving antennas NT, NR [9]. Defining
b ¼ NT=NR and g the average channel SNR, the mean
and the variance of the capacity process are given by [9]
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For small values of SNR g these equations could be
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simplified to produce
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while for large SNR g the following approximations are valid
for b ¼ 1 [12]
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Interestingly, Hochwald el al. [3] considered the case of a
reasonable number of antennas NT, NR, proving that the
Gaussian distribution holds in the case of small numbers of
antennas and i.i.d. channel coefficients. High accuracy in
the capacity distribution is obtained even for 2 � 2 MIMO
systems. The Gaussian approximation becomes more and
more accurate increasing NT and NR.

Referring to the problem under analysis, we are interested
in a prediction model for the capacity variation. The
definition of capacity for MIMO channels [9, 13] suggests
that the instantaneous capacity evolves in time according to
the fading process. This consideration has been deeply
investigated in [14]. Specifically, referring to the block
fading model, the time variation of the channel is described
by the normalised Doppler frequency fm ¼ fdTf , where fd is
the Doppler frequency in Hz and Tf is the system frame
duration. The value of fm does not affect the statistical
channel description, once a proper observation interval is
set to derive the statistical characteristics. If the process
exhibits a long autocorrelation function, the need of
independent samples to achieve accurate statistics leads to a
long process observation time. The time variation of the
instantaneous capacity could be described in terms of
DAR models, as presented in [15, 16]. In the simplest case
of DAR-1 model, the capacity evolution equation is given by

DC(nþ 1) ¼ rDC(n)þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
j(nþ 1) (8)

where DC(nþ 1) ¼ (C(nþ 1)� �C)=sC is the normalised
deviation of capacity C(nþ 1) at the discrete time n þ 1
from its time average �C; j(nþ 1) is a sequence of i.i.d.
zero mean Gaussian variables with unit variance. The
analytical investigation of the correlation coefficient r is still
an open issue. It can be estimated from experimental data
[15] or its value could be deduced based on some
theoretical development. Although a complete analytical
description of the MIMO channel capacity is still under
research, the study in [14] suggests that the instantaneous
capacity evolves with the same statistical characteristics of
the fading channel. The results presented in that study
6
The Institution of Engineering and Technology 2010
support the conclusion that the channel autocorrelation can
be a valid model also for the capacity correlation coefficient
r. Starting from the Gaussian wide sense stationary (WSS)
uncorrelated scattering model, the autocorrelation sequence
for ideally generated in-phase and quadrature Gaussian
processes at discrete time is given by

R[n] ¼ J0(2pfmjnj) (9)

where J0 is the zero-order Bessel function of the first kind.
Equation (9) allows to obtain the correlation information of
the capacity process once the discrete prediction interval
nTf is set. At the transmitter, the DAR-1 prediction model
can be set up with the knowledge of the statistical
moments of the capacity process to obtain the
instantaneous capacity value for the next time frame.
Moreover, the DAR-1 model assigns Markov nature to C(n).

4.1 Outage probability

Capacity specifies how much information the channel can
support, which turns into a maximum amount of
information the system can reliably transmit. The
probability of outage describes the frequency at which
capacity falls under a specific signalling rate: in that case no
reliable transmissions are possible. A certain maximum
probability of outage Pout is required for the constant data
rate transmission over the MIMO channel. The outage
appears when the signalling information rate r exceeds the
instantaneous capacity Cn at time n, therefore [12]

Pout ¼ Prob(Cn , r) ¼
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where Q(x) is the well-known Q-function [10] and �C and sC

can be calculated using (1) and (2). Solving (10) for r in terms
of desired Pout allows one to set a proper information rate on
the channel. If Pout � 1, which is usually a case, one can
obtain a simple approximation from the upper bound in (10)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2s2
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q
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where r is the maximum signalling rate the channel can
support given a desired probability of outage, �C is the
average channel capacity per antenna specified in (1), Pout

is the desired outage probability and ln is the natural
logarithm.
IET Commun., 2010, Vol. 4, Iss. 6, pp. 683–696
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5 Review of previous works on
finite state Markov model for radio
communication channels
The FSMC for random processes is a useful model for
studying the process behaviour in time. Of primary
importance for the FSMC model are the state probabilities
and the transition probabilities among different states. We
present here the main model for communication channel
and an efficient way of deriving the transition probabilities
among all the possible states based on an eigenvalues
analysis. The literature reveals many attempts to model the
fading envelope of a time variant communication channel
and the resulting error flow using finite Markov chains. In
this section, the meaning and importance of FSMC as a
model of radio communication channels are discussed in
order to introduce the problem of the FSMC model for
the MIMO channel capacity.

The study of the FSMC to model a communication
channel emerges from the early work of Gilbert [17] and
Elliott [18] who studied a two-states Markov channel
known as the Gilbert–Elliott channel. Their model is
composed of a good state G and a bad or burst state B, the
transition probabilities are made in order to simulate the
burst error conditions. More complex Markov models
followed this first one, in the attempt of modelling more
accurately the communication error statistical behaviour
[19]. When the channel quality varies significantly, the
two-state Gilbert–Elliott model is not adequate. A
straightforward solution is to increase the possible states of
the model to a finite set S ¼ {s0, s1, . . . , sK�1}; if
the process under analysis is ergodic, the resulting Markov
process {S(n)}, for n ¼ 1, 2, . . . will be a constant Markov
process with the related properties. Looking at wireless
communications in fading environments, many works
suggested the idea of creating a FSMC for the channel
state [6, 7, 20], obtained by partitioning the SNR at the
receiver side in K possible states. The transition
probabilities between two channel states depend on the
statistical description of the random fading process. Wang
and Moayeri [20] proposed a well-known analytical model
to calculate the transition probabilities by looking at the
fading process and SNR statistics. The core of this model
is the evaluation of the LCR for the SNR process. Given a
random process x, the LCR of a specific value x̂ in a time
interval Dt is defined as

ðtþDt

t

p{x . x̂} dt (12)

and it is dependent on the duration of the observation
interval Dt. The LCR is defined as the number of crossing
per second of a given threshold. Defining Dx ¼ _xDt, a
possible way to obtain the LCR is to derive the statistical
distribution of the first derivative ẋ, which represents the
velocity of the process, and then evaluate the probability of
Commun., 2010, Vol. 4, Iss. 6, pp. 683–696
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x being around the threshold x̂ with all the possible velocities

LCR(x̂) ¼

ð1

0

_xp(x̂, _x) d_x (13)

where p(x̂, _x) is the joint density of the process x̂ and its first
derivative ẋ. In the case of Gaussian process this integral can
be solved in a closed form which involves the second
derivative of the correlation coefficient rxx(Dt) of the
process x under analysis. Knowing the statistics of the
received SNR, the probability inside the integral can be
expressed in a closed form. The study of the LCR allows to
approximate the transition probabilities to the adjacent
channel states in the simple form

pi,iþ1 ’
LCRiþ1

R(i)
t

, i ¼ 0, 1, . . . , K � 2 (14)

where LCRiþ1 is the number of up-crossing rate per second
and R(i)

t ¼ Rt � pi is the symbol transmission rate weighted
by the state probability pi. The LCR can be derived
analytically from the received SNR distribution [20]

LCR(a) ¼

ffiffiffiffiffiffiffiffi
2pa

�g

s
fd exp �

a

�g

	 

(15)

where g ¼ E{A} denotes the mean value of the received SNR
and fd ¼ v=l is the Doppler frequency of the mobile user
normalised to the carrier wavelength l. Equation (14) is
referred as the Wang–Moayeri model for adjacent states
transition probabilities, which can be determined as

pk,kþ1 ¼
Nkþ1Tf

pk

, k ¼ 0, . . . , K � 1

pk,k�1 ¼
NkTf

pk

, k ¼ 1, . . . , K

(16)

in which Nk is the cross rate for state k, either upward or
downward and pk is the kth state probability. By the
assumption in the model [20], the probability of remaining
in the same state k is defined as

pk,k ¼

1� pk,kþ1 � pk,k�1, if 0 , k , K
1� p0,1, if k ¼ 0
1� pK ,K�1, if k ¼ K

8<
: (17)

The Wang–Moayeri method (for the evaluation of transition
probabilities of a random process) has been used in [5] to
generate a FSMC of the channel state based on the
received SNR. In [5], the modulation and coding at the
transmitter sides are adapted to the variation of the SNR
of the communication link, modelled as a FSMC. The
proposed channel partition method CPM maintains a
certain level of average packet error rate (PER) over the
time-variant channel when corresponding AMC mode is
applied for each channel state. When the target PER is not
fixed a priori, the overall packet loss at PHY and MAC
687
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layers can be minimised through cross-layer analysis. The use
of LCR for MIMO capacity appears in [15], in which the
estimation of LCR is a good parameter to obtain the
transition probabilities in case of slow fading environments.

One limit of the above framework is that it can only
provide a simple way to obtain the transition probabilities
between adjacent states. Consequently, it can be inferred
that this model works well for slow varying processes which
evolve only to adjacent states in the time observation
interval Dt. Defining fd as the Doppler frequency in Hz
and Tf as the frame duration in s, for high normalised
Doppler frequency fm ¼ fdTf the process could jump to
non-adjacent states and the crossing probability between
the adjacent states may turn in very low values. In order to
overcome this limitation, in case of moderate/high
normalised Doppler frequency a different approach to the
problem must be taken.

The main disadvantage of evaluating the transition
probabilities by the Wang–Moayeri model [20] or by the
analytical framework in [15] is the fact that, while the
elements of the transition matrices can be analytically
calculated, it is especially difficult to obtain analytical
expressions for eigenvalues and eigenvectors of the matrix
of transitional probabilities. The model proposed in [21]
allows to determine the transition probability matrix for a
K-state Markov chain with the knowledge of the process
correlation interval d, which is the second largest eigenvalue
of the generated process [22]. The exact knowledge of
eigenvalues greatly reduces the complexity and
accumulation of numerical error. Let P ¼ [pij] be a matrix
of transitional probabilities of the DAR-1 K-states Markov
chain. It is shown in [21] that P is defined as

P ¼ Qþ d � (I �Q), 0 � d , 1 (18)

where I is the identity matrix and Q is composed by the
steady state probabilities as shown

Q ¼

p0 p0 . . . p0

p1 p1 . . . p1

: : . . . :
pK�1 pK�1 . . . pK�1

2
664

3
775 (19)

where {pk}k¼0, ...,K�1 are the stationary probabilities. The
resulting Markov process i at discrete time k ¼ 0, 1, . . .
has an exponential autocorrelation function

Rii(k) ¼ Rii(0)dk (20)

which matches the desired autocorrelation of an AR-1
generated process. The value d corresponds to the
autocorrelation of the process at time k ¼ 1, 2, . . .; if the
information on the autocorrelation is available, it is possible
to obtain the transition probabilities by the first two matrix
eigenvalues. In the case of a mobile wireless
communication system, the channel autocorrelation
8
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between two frames of duration Tf is r ¼ J0(2pfdTf ) [10],
where fd is the Doppler frequency of the mobile user and
Tf is the frame duration.

The method proposed in [21] provides the transition
probabilities among all the possible states K and not only
between adjacent states. For this reason, especially for
significant normalised Doppler frequency fm (moderate/
high fading), the transition probabilities obtained by this
model are to be preferred to the ones based on LCR in
(16) and (17).

The eigenvalues method will be used in the next sections
to evaluate the transition probabilities for the FSMC of the
instantaneous channel capacity.

6 FSMC for MIMO channel
capacity
As in [11, 12], the instantaneous capacity is well described by
a random Gaussian process with mean C and variance
s2

C :C � N (C, s2
C ). Referring to the analysis in Section 4,

the DAR-1 evolution model of the channel capacity
process in (8) assigns a Markov nature to the process, in
the specific case of the first order. In this model, the
information on the next state is gained only from the
current state, assuming that information corresponding to
previous states is negligible. Following the idea proposed in
Section 5, a FSMC can be obtained by partitioning the
instantaneous capacity process into a finite number of
intervals or states S ¼ {s0, s1, . . . , sK�1}, with
corresponding thresholds {ck}

K
k¼0. Capacity is said to be in

state sk, k ¼ 0, 1, . . . , K � 1 if the value C of the process
is in the interval [ck, ckþ1), that is

ck � C , ckþ1 (21)

As discussed in [21], partitioning must be performed such
that the highest state probability is assigned to the state s�k ,
which contains the average value of the capacity process, by
selecting boundaries [c�k , c�kþ1) such that

�C ¼
c�k þ c�kþ1

2
(22)

The states surrounding s�k on the left and right of the process
PDF must have decreasing probabilities with respect to s�k . If
the partitioned process is ergodic, the Markov process Sk is a
stationary process, with the property that transition
probabilities are time invariant [23]. The evolution of the
capacity process is related to a fixed timescale defined by
the frame duration Tf of the system. According to the
general block fading model, the channel capacity is
assumed to remain constant within one block period, with
a block length equal to Tf. The instantaneous capacity
evolution model has been presented in (8). Given the value
of capacity at time index nTf with n ¼ 0, 1, . . ., the
capacity process at time n þ 1 is a Gaussian random
IET Commun., 2010, Vol. 4, Iss. 6, pp. 683–696
doi: 10.1049/iet-com.2009.0140
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variable related to the original process by the correlation
coefficient r(Tf ) (from now on the parameter Tf will
be omitted). Specifically, the Gaussian process at one
step prediction is characterised by the following first two
moments

�Cnþ1 ¼ (1� r) �Cn þ rC(n)

s2
nþ1 ¼ (1� jrj2)s2

n

(23)

For a FSMC model the two probabilities of main interest are
the steady state probability, which describes the asymptotic
probability of being in a given state sk and the transition
probabilities, which drive the transitions among different
states.

1. Steady State Probabilities: the probability pk
o that the

instantaneous capacity is in state sk is defined as

po
k ¼

ðckþ1

ck

p(C) dC (24)

for k ¼ 0, 1, . . . , K � 1. For Gaussian random variables,
the steady state probability is easily expressed by
Q(ck)� Q(ckþ1), where Q(x) represents the well-known
Q-function [10]. The steady state probabilities can be
arranged in the following vector form

p ¼ lim
n!1

p(s(n) ¼ sk) (25)

for time index n ¼ 0, 1, 2 . . . and for k ¼ 0, 1, . . . , K � 1.

2. Transition Probabilities: the probability of transitions
between two states is a conditional probability which can
be obtained by the joint PDF of the state distribution,
according to the Bayes’ rule

p(bja) ¼
p(b, a)

p(a)
(26)

The two variables under attention are the capacity values C at
time n and n þ 1. According to (8), the capacity evolution
C(n) is still a Gaussian variable. For the particular case of
two Gaussian random variables, the joint probability is
given by [24]

p{x1, x2} ¼

ðciþ1

ci

ðcjþ1

cj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2

1s
2
2(1� r2)

q exp �
1

2(1� r2)

�

�
dx2

1

s2
1

þ
2rdx1dx2

s1s2

þ
dx2

2

s2
2

 !#
dx1 dx2

(27)

where dx is defined as x� mx and r is the correlation
coefficient between x1 and x2 at the sampling time Tf. The
transition probability is then the joint PDF weighted by
T Commun., 2010, Vol. 4, Iss. 6, pp. 683–696
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the marginal density of one of the two variables. Transition
probabilities are arranged in a matrix P.

The steady state and transition probabilities can be evaluated
numerically once a set of thresholds {ck}

K
k¼0 has been defined.

The steady state probabilities of the capacity process are
evaluated by (24) as the probability of being a specified state

p{C [ sk} ¼

ðckþ1

ck

pC (x) dx (28)

where pC(x) is the Gaussian PDF of the instantaneous
capacity.

Referring to the theory in [23], a probability distribution
{pkjk � 0} is said to be a stationary distribution for the
Markov chain if

pk ¼
XK�1

i¼0
pipi,k, k ¼ 0, 1, . . . , K � 1 (29)

Equation (29) can be extended to all the states in the vector
equation

p ¼ pP,
X

k[S
pk ¼ 1 (30)

Equation (30) shows that p is left eigenvector of the matrix
of transition probabilities P corresponding to the eigen-
value 1. Thus the eigenvalues method proposed in [21]
seems to be appropriate for evaluating the elements of the
transition probability matrix. We considered (30) to
validate the state and transition probabilities. Numerical
results showed that the method based on the joint PDF in
(27) is easily subject to numerical error because of the
precision of the integral evaluation, which can only be
solved numerically. As previously discussed, the LCR
method shows an unrealistic high probability remaining in
the same capacity state even for high normalised Doppler
fm. The eigenvalue framework proposed in [21] has shown
the best behaviour, matching with high accuracy the
Markov property in (30).

In conclusion, once the transition probabilities are
computed, the FSMC for the channel capacity is modelled
as a (K þ 1)� (K þ 1) transition probability matrix, with
the form

P0,0 P0,1 . . . P0,K

P1,0 P1,1 . . . ..
.

P2,0
. .

. . .
.

P2,K

..

.
PK�1,K�2 PK�1,K�1 PK�1,K

. . . . . . PK ,K�1 PK ,K

2
666666666664

3
777777777775

(31)
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7 MDP theory: policy domain
performance optimisation
The knowledge of the variation of the instantaneous capacity
process leads to describe the evolution of the maximum
amount of information that can be sent over the channel.
Once a set of possible signalling rates is available at the
PHY layer, the question of which rate must be chosen
according to the capacity state becomes of primary
importance. This kind of problem is referred in the
literature as a two-dimensional optimisation problem,
which can be investigated by the application of DP and
MDP theories for the optimal transmission policy design.

The question of which is the best signalling rate can be
addressed by introducing the definition of reward for each
possible choice [25]. Generally speaking the definition of
‘reward’ refers to a specific performance metric. The idea
beyond the optimisation procedure is that the total
expected reward must be maximised either after a finite
number of iterations or in the perspective of an indefinite
working horizon.

In this study the theory of MDP is applied to the choice of
the best signalling rate according the system conditions.
Specifically, the value of ‘reward’ is defined as the number
of packets correctly received at the destination MAC layer.
Consider a completely ergodic K-states Markov process:
the process states are described by the steady-state
probabilities and the transition probability matrix P, the
reward matrix G associates a specific reward with each state
and transition. The process is allowed to evolve for a very
long time and the parameter of interest is the total
expected reward of the process. Since the process is
completely ergodic, the limiting steady state probabilities
pi,j are independent of the staring state, the gain of the
process is defined as [25]

g ¼
XK�1

i¼0

piqi (32)

where the quantity qi is the immediate reward in state i
defined as [25]

qi ¼
XK�1

j¼0

pi, j ri, j (33)

It is important to note that every ergodic Markov process
with reward will have a gain defined as in (32). The same

equation can be arranged in a vector form considering all
the states i ¼ 0, . . . , K � 1

g ¼ p� qT (34)

If different actions can be taken at any state, the transition
matrix and the reward structure will change according to the
chosen action. At each state, a specific action has effects on
the probability distribution of transitions and on the
rewards, since each action reasonably introduces a specific
cost and result. In the case of study, the set of available
signalling rates constitutes the action space A(s) for each
capacity state s [ S. A policy is defined when one specific
action a [ A has been defined for each state of the model.
Bringing into the model the system buffer, a convenient
signalling rate can be chosen according both to the capacity
state and queue buffer state. Suppose that the system has a
single buffer of B packets. The buffer state defines how
many packets are waiting in the buffer and it is itself a
FSMC dependent on the arrival process. The higher levels
arrival process is described by a Poisson model [23]

Prob{A(t) ¼ m} ¼
e�lt(lt)m

m!
, m ¼ 0, 1, . . . (35)

where A(t) ¼ m denotes the event of m arrivals in the time
interval t. l is the average arrival rate in packets/s. The
capacity transitions and the arrival process are considered
two independent processes because of their different nature.
Considering both the capacity and buffer states leads to a
two-dimensional problem, in which the system is
completely characterised by the state pair s(k, q), where k is
the capacity state index and q is the MAC layer queue length.

In order to refer to the MDPs theory, we define the state
transition probability matrix and the reward matrix as follows.

1. State transition probability matrix T: It is a three-
dimensional matrix which orders the possible actual states,
the possible succeeding states and the possible actions (or
alternatives), which can be chosen in each state. Each ‘slice’
za corresponds to the set of all possible transitions of the
pair state capacity-buffer: (k, q)(k0, q0) for k ¼ 0, 1, . . . ,
K � 1, q ¼ 0, 1, . . . , B (see (36))

The transition probability pa
(k,q),(k0,q0) is function of the

parameters (a, k, q, k0, q0) and represents the probability of
passing from the state (k, q) to the new state configuration
(k0, q0) in terms of capacity and buffer size. The value a
specifies the action to take at time Tf, in this case the

za ¼

pa
(0,0);(0,0) . . . pa

(0,0);(1,0) . . . pa
(0,0);(K�1,B�1)

pa
(0,1);(0,0) . . . . . . . . . ..

.

..

. . .
. ..

. . .
. ..

.

pa
(K�1,B�1);(0,0) . . . pa

(K�1,B�1);(1,0) . . . pa
(K�1,B�1);(K�1,B�1)

2
666664

3
777775 (36)
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choice of the signalling rate for the current block. The value
of pa

(k,q),(k0,q0) in T is defined for any possible action in the
current a [ A(s(k,q)), as

† if (q �min(q, wa
max) � q0 , B), then

pa
(k,q),(k0,q0) ¼ p{A(Tf )

¼ q0 � [q �min(q, wa
max)]}� pk;k0 (37)

† if (q �min(q, wa
max) � q0 ¼ B), then

pa
(k,q),(k0,q0) ¼ 1�

XB�1

q0¼0

p{A(Tf )

¼ q0 � [q �min(q, wa
max)]}� pk;k0 (38)

where wa
max is the maximum number of packets that can be

served in the time interval Tf when a specific action a is
taken. A(Tf) denotes the expected number of packets that
will arrive in the next interval Tf according to the arrival
process. The probability of arrival are modelled according
to the Poisson arrival process, the capacity transition
probabilities are derived for every state transition according
to the FSMC of channel capacity. The optimal choice for
the action a to take is the optimisation problem which
requires the knowledge of the rewards for each action.

2. State transition reward matrix G: Each element specifies
the reward associated with a state transition (k, q), (k0, q0)
for a given action a. With this definition, elements of G are
function of the set {a, k, q, k0, q0} and defined as

ga
(k,q);(k0q0) ¼

min(q, wa
max)� [1� Pa

out(k)], pa
(k,q);(k0,q0) = 0

0, otherwise

	
(39)

where Pa
out(k) denotes the probability of outage on the

channel, which is the probability of no reliable transmission
as seen in Section 4.1.

The optimisation problem works on the variable a, which
denotes the possible actions to take at every decision epoch
Tf. In an optimal model, at each step Tf the transmitter
predicts the instantaneous capacity and obtain a set of
possible signalling rates associated with outage probability.
The action a is the decision of a specific rate to use in the
next time interval Tf. A decision on the signalling rate will
have consequences on the buffer queue (how many packets
the system will serve) and on the outage probability in
transmission. When the optimal action is decided for every
possible state, a policy m is obtained. From the matrices T
and G, the optimal policy for signalling rate selection can
be solved by the policy iteration method discussed in [25].
The resulting policy m0 is a vector d, which specifies the
best action a to take at each possible state of the process.
T Commun., 2010, Vol. 4, Iss. 6, pp. 683–696
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Since any policy also defines a specific state probability
pa

(k,q),(k0,q0) and reward ga
(k,q),(k0q0) for each process state, each

policy m thus specifies a unique Markov process with
rewards. Given the specific definition of reward, the
transmission policy resulting from the MDP analysis is
optimal in the sense that it maximises the total reward of
the process.

8 Two-dimensional cross layer
optimisation
In this section the improvement in the system performance
brought by the two-dimensional optimisation is analysed.
The possibility of adapting the signalling rate to the
channel capacity state and the buffer state reduces the total
probability of losing packets in transmission.

Referring to the analysis in [26], the probability of data loss
depends on both capacity outage and buffer overflow.
Moreover, Bai and Shami [27, 28] emphasise that the
optimal choice of the signalling rate must take into
consideration not only the channel state evolution but also
the system buffer state. In terms of throughput at the
MAC layer, the optimal transmission strategy depends also
on the amount of information available at the buffer: the
optimal signalling rate allows transmitting all the data in
the buffer without incurring in the channel outage
probability. This fact leads to a deep cross-layer analysis,
whose purpose is to transmit at optimal signalling rate
given the conditions of the buffer and communication
channel.

To avoid a deep analysis of the modulation and code
scheme at the PHY layer, this work proceeds on the
assumption that the information level described by the
channel capacity can be achieved by a proper code and
modulation scheme. This hypothesis holds where there are
no constrains on transmission delay and energy
consumption. The optimisation target turns into the MAC
layer throughput for the optimal transmission policy design.

Consider the FSMC model of the capacity evolution
described in Section 6. The frame duration Tf represents
the time interval in which the system transmits with a fixed
information rate, established at the beginning of the time
frame. Specifically, let us consider the knowledge of the
instantaneous capacity C(n) at a specific time n. C(nþ 1) is
the predicted instantaneous capacity at the next time step
according to the specific DAR-1 evolution model in (8),
Section 4. The probability distribution of the predicted
instantaneous capacity is given by pC (C(nþ 1)jC(n)): it is
conditioned to the previous value C(n) and it is still
Gaussian. The mean value and variance of prediction are
obtained by taking the expectation of the AR model,
resulting in (23). The transmitter predicts the
instantaneous state of the channel capacity C(nþ 1) based
on the knowledge of the previous state C(n) and establish a
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possible information rate r(nþ 1) � C(nþ 1). The
corresponding probability of outage is given by [12]

Pout ¼ Prob(C(nþ 1) , r(nþ 1)) ¼

ðR

�1

pC (x)dx

¼ Q
C(nþ 1)� r(nþ 1)

snþ1

� �
(40)

For any given rate r(nþ 1) the corresponding outage
probability can be calculated with the use of the mean and
variance of the DAR-1 predicted capacity. As from (23),
the moments of the distribution depends on the correlation
coefficient r of the capacity process. For a long prediction
interval the correlation coefficient decays to zero resulting
into the mean and variance of prediction equal to the mean
and variance of the original process: no additional
information is available for the prediction. If a specific
outage is required as a quality metric in the transmission,
the corresponding maximum signalling rate can be derived
according to [12]

r(nþ 1) ’ max �Cnþ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2s2

nþ1 ln(2Pout)
q	 


(41)

where Pout is the desired outage probability and Cnþ1, s2
nþ1

are the mean and variance of the DAR-1 prediction.

From a MAC layer point of view, deciding for a specific
rate r(nþ 1) has two effects: on one side a value of
w(nþ 1) packets will be transmitted in the next Tf if
present in the buffer; on the other side a price will be paid
in terms of probability of loosing packets because of outage.
The FSMC of the instantaneous capacity defines the
transition probability matrix of the capacity process. The
capacity transition in the next time step is driven by the
values of the transition matrix, with each arriving state
associated with a probability value. For each one of the
capacity states we define a proper set of permitted
signalling rates R ¼ {rk}

K�1
k¼0 , where

rk � ck, rk [ R, 0 � k � K � 1 (42)

For each one of the possible rates, the outage probability
would be the probability that capacity at the predicted state
is under the rate value. When outage occurs no reliable
transmission are possible since the channel do not support
and carry the information that is being sent. For each
capacity state, the possible signalling rates are a subset
of the set R, according to the outage requirement.
If the signalling rates rk are expressed in packets/s,
the packet error rate (PER) is given by r(nþ 1)� Pout

while a successful data transmission is obtained for
r(nþ 1)� (1� Pout).
2
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8.1 Numerical simulations

We compared the system behaviour in case of the MDP
adaptive rate transmission policy and the constant rate
transmission policy. In the model specified in Section 7, the
reward structure of the problem is defined as the number of
packets which are correctly received on the other side of the
communication link, as specified in (39). For this reason
the process reward g can be related directly to the
throughput h of the system through the time frame duration

h ¼ g=Tf (43)

A second QoS parameter considered is the packet loss rate at
the source. Disregarding the origin of the loss, the total
packet loss rate is the complementary part of both the total
packet arrived at the source and the packet correctly
received. Therefore the source packet loss rate is defined as

1 ¼ 1�
g

lTf

(44)

According to (39), the reward matrix for the constant rate
transmission is a matrix of equal elements since the
signalling rate is constant for all the states. Once the
signalling rate is specified, the corresponding outage
probability limits the process reward.

The simulations parameters are presented Table 1. We
considered a MIMO 4 � 4 system with AWGN and SNR
equal to 10 dB. The number of antennas equal to 4 is a
reasonable choice as it represents a good trade-off between
performance improvements and complexity. Referring to
the 802.16e standard, the transmission band is equal to
1.25 MHz. We considered a carrier of 2 GHz and a user
speed of 10 m/s, which is a reasonable average speed in
urban environments. The buffer size is set to B ¼ 20
packets and the capacity process is divided into K ¼ 7
states. The signalling rates are chosen according to (41) for
a target Pout of the system. This leads to a state transition

Table 1 System parameters

Description Parameter Value

SNR SNR 10 dB

band W 1.25 MHz

Tx, Rx antennas NT, NR 4

bits per packet Nb 1080

carrier frequency fc 2 GHz

user speed v 10 m/s

frame duration Tf 0.002 s

buffer size (packets) B 20

capacity states K 7
IET Commun., 2010, Vol. 4, Iss. 6, pp. 683–696
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matrix of size B � K � A where A is the number of suitable
signalling rates in the set R specified by (42).

The two sources of data loss are the probability of
outage Pout at the PHY layer and the probability of buffer
overflow Poverflow at the MAC layer. In order to describe
the whole system behaviour, the total probability of
failure is defined as the sum of those two components:
PFAIL ¼ Pout þ Poverflow. Note that the sum of the two
probabilities is the lower bound of the successful
transmission probability, defined as

n ¼ (1� Pout)(1� Poverflow) (45)

The buffer overflow and the outage events are independent;
the first one is related to the arrival process and buffer size,
the second one depends on the channel capacity random
process. Fig. 2 shows the average system throughput for a
constant rate transmission with two different strategies. In
the first case (dashed circle line), the signalling rate is
chosen to avoid channel outage, in the second case a more
aggressive strategy is implemented and the system works at
a signalling rate equal to the channel ergodic capacity
(mean value of the channel capacity distribution). In the
first case, the system works with a low signalling rate which
becomes insufficient to avoid the buffer overflow when the
packet arrival rate increases: in (2) the system throughput is
limited by the buffer overflow (Poverflow). In the second
case, the system works with a higher signalling rate: the
average system throughput increases for higher arrival rates,
even though it is continuously limited by the outage
probability (Pout).

Fig. 2 shows that the average system throughput of a
constant rate transmission based on either the buffer
overflow probability or the channel outage probability is
significantly limited. This consideration leads to improve

Figure 2 Average system throughput for constant rate
transmission
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the system performance by adapting the signalling rate and
optimising the transmission strategy.

The following figures show the difference of process gains
and data loss probability for the constant rate transmission
and the adaptive rate transmission obtained by the MDP
analysis. The optimal policy obtained by the MDP analysis
adapts the signalling rate to the state of buffer and capacity
at every time frame Tf, forcing the system to work at high
values of signalling rate only when the buffer is full.

Fig. 3 shows the benefits in terms of system throughput
obtained by adapting the signalling rate to both the buffer
occupancy and the channel capacity state. We assume that
a certain maximum outage probability Pout needs to be met
for MIMO transmission. Dashed lines show the system
throughput for constant rate transmission using the highest
signalling rate allowed by the Pout requirement. As
expected, the system throughput decays when the packet
arrival rate is allowed to increase. The MDP optimisation
ensures that, at each possible state, the best signalling rate
is chosen maximising the system gain: the average system
throughput reaches a stable value also for high arrival rates.
The average system throughput obtained with the MDP
transmission strategy does not show the strong decline in
gain which affects the constant rate transmission in Fig. 2
for high packet arrival rates.

The study of the packet loss rate confirms the better
performance obtained by adapting the transmission rate
based on the channel/buffer state. Fig. 4 shows the average
packet loss rate resulting from the MDP transmission
strategy. The dashed lines represent the packet loss rate for
constant transmission rates based on two different outage
requirements. If no outage is allowed, the system is
penalised at high arrival rates when the low transmission
rate cannot support the system limited buffer. On the other

Figure 3 Average system throughput for different arrival
rates
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hand, allowing a little outage on the channel helps in
reducing the packet loss for high arrival rates. The joint
consideration of the two behaviours leads to a better
transmission strategy, which shows a significantly lower
average packet loss rate. The strategy obtained by the MDP
results to be the optimal one in terms of average packet loss
rate: the adaptive rate transmission, limiting the allowed
signalling rates to match a specific outage requirement,
works with a lower rate but results in overall better
performance described by the controlled increase of the
packet loss rate.

A target outage probability Pout can be specified as a system
requirement. A target Pout will lead to the choice of a suitable
set of signalling rate to match the requirement. Fig. 5 shows
the average system throughput with a target Pout ¼ 10�3. A

Figure 4 Average packet loss rate for different arrival rates

Figure 5 Average system throughput with target
Pout ¼ 1023
4
The Institution of Engineering and Technology 2010
more strict requirement in terms of outage imposes lower
signalling rates which turns into a lower gain compared
with the optimal transmission strategy with Pout ¼ 10�2

(dashed line). The number of packets per time frame
correctly received is lower and an increase in the buffer
overflow probability is expected. The adaptive strategy gain
is always higher than the constant rate transmission with
the same suitable rates, confirming the efficiency of the
MDP optimisation.

Finally, when imposing a target Pout, the system buffer can
be designed to match a specific packet loss rate. Fig. 6 shows
the average packet loss rate for different arrival rates, Pout and
buffer sizes B. The system buffer can be specified to achieve a
specific requirement on the packet loss rate. Moreover,
according to the system condition (i.e. packet arrival rate),
the system performance can be enhanced by allowing a
higher Pout instead of changing the buffer size. The
analysis presented helps to discuss the best system design
strategy.

9 Conclusions
In this study, we have proposed a two-dimensional
performance optimisation technique for data transmission
over a MIMO wireless channel. The proposed scheme
considers the evolving MIMO wireless channel capacity as
well as the buffer occupancy in order to achieve the
optimum wireless system throughput.

The MIMO channel capacity was modelled as a FSMC
and the transition probabilities were analytically derived for
adjacent and also non-adjacent states. The problem of the
optimal transmission signalling rate was resolved referring
to the MDP theory. The optimal signalling rate results
from both the predicted capacity in the future time frame
and the number of data packets in the buffer, in order to
minimise the probability of data loss both from the buffer

Figure 6 Average packet loss rate
IET Commun., 2010, Vol. 4, Iss. 6, pp. 683–696
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(overflow) and the channel (outage). Assuming a frame
duration Tf, the signalling rate is adapted at every frame
according to both the buffer state and the capacity
transition behaviour. The MDP optimisation derives the
optimal transmission rate for every possible state of buffer
and capacity, obtaining the optimal transmission strategy.

The joint consideration of Pout and Poverflow is necessary to
evaluate the system performance and the MDP analysis was
an efficient method to maximise the system throughput.
Numerical analysis indicates that using the derived optimal
strategy increases significantly the system performance, both
in throughput per frame and in packet loss rate, especially
when the system experiences high data loads.
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